
Bubble	Sort	

Pseudocode	implementation	

The algorithm can be expressed as (0-based array):

procedure bubbleSort(A : list of sortable items)
 n = length(A)
 repeat
 swapped = false
 for i = 1 to n-1 inclusive do
 /* if this pair is out of order */
 if A[i-1] > A[i] then
 /* swap them and remember something changed */
 swap(A[i-1], A[i])
 swapped = true
 end if
 end for
 until not swapped
end procedure

Optimizing bubble sort
The bubble sort algorithm can be easily optimized by observing that the n-th pass
finds the n-th largest element and puts it into its final place. So, the inner loop can
avoid looking at the last n-1 items when running for the n-th time:

procedure bubbleSort(A : list of sortable items)
 n = length(A)
 repeat
 swapped = false
 for i = 1 to n-1 inclusive do
 if A[i-1] > A[i] then
 swap(A[i-1], A[i])
 swapped = true
 end if
 end for
 n = n - 1
 until not swapped
end procedure

More generally, it can happen that more than one element is placed in their final
position on a single pass. In particular, after every pass, all elements after the
last swap are sorted, and do not need to be checked again. This allows us to skip
over a lot of the elements, resulting in about a worst case 50% improvement in
comparison count (though no improvement in swap counts), and adds very little
complexity because the new code subsumes the "swapped" variable:
To accomplish this in pseudocode we write the following:

procedure bubbleSort(A : list of sortable items)
 n = length(A)
 repeat
 newn = 0
 for i = 1 to n-1 inclusive do
 if A[i-1] > A[i] then
 swap(A[i-1], A[i])
 newn = i
 end if
 end for
 n = newn
 until n = 0
end procedure

Alternate modifications, such as the cocktail shaker sort attempt to improve on
the bubble sort performance while keeping the same idea of repeatedly
comparing and swapping adjacent items.	

